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Focused on the Student, Organized  
by Mechanism
When an organic reaction is presented to a novice, only the structural differences between 
the reactants and products are immediately apparent. Students tend to see only what 
happens, such as the transformation of one functional group into another, changes in 
connectivity, and aspects of stereochemistry. It should therefore not be surprising that 
students, when presented reactions, are tempted to commit the reactions to memory. But 
there are far too many reactions and accompanying details for memorization to work in 
organic chemistry.

This is where mechanisms come into play. Mechanisms allow us to understand the 
sequences of elementary steps —  the step-by-step pathways —  that convert the reactants 
to products, so we can see how and why reactions take place as they do. Moreover, the 
mechanisms that describe the large number of reactions in the course are constructed 
from just a handful of elementary steps, so mechanisms allow us to see similarities among 
reactions that are not otherwise apparent. In other words, mechanisms actually simplify 
organic chemistry. Thus, teaching students mechanisms —  enabling students to under-
stand and simplify organic chemistry —  is an enormous key to success in the course.

At the outset of my teaching career, I fully appreciated the importance of mecha-
nisms, so during my first couple years of teaching, I emphasized mechanisms very 
heavily. I did so under a functional group organization where reactions are pulled 
together according to the functional groups that react. That is the organization under 
which I learned organic chemistry, and it is also the way that most organic chemistry 
textbooks are organized. Despite my best efforts, the majority of my students struggled 
with even the basics of mechanisms and, consequently, turned to flash cards as their 
primary study tool. They tried to memorize their way through the course, which made 
matters worse.

I began to wonder what impact the organization — an organization according to 
functional group —  had on deterring my students from mechanisms. I had good reason 
to be concerned because, as I alluded to earlier, functional groups tend to convey what, 
whereas mechanisms convey how and why. What kinds of mixed messages were my stu-
dents receiving when I was heavily emphasizing mechanisms, while the organization of 
the material was giving priority to functional groups? To probe that question, I made a 
big change to my teaching.

The third year I taught organic chemistry, I rearranged the material to pull together 
reactions that had the same or similar mechanisms —  that is, I taught under a mechanistic 
organization. I made no other changes that year; the course content, course structure, and 
my teaching style all remained the same. I even taught out of the same textbook. But that 
year I saw dramatic improvements in my students’ mastery of mechanisms.1 Students had 
control over the material, which proved to be a tremendous motivator. They were better 
able to solve different kinds of problems with confidence. Ultimately, I saw significant 
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improvements in student performance, morale, and retention. I was convinced that stu-
dents benefit remarkably from learning under a mechanistic organization.

My goal in writing this book is to support instructors who are seeking what I was 
seeking: getting students to use mechanisms to learn organic chemistry in order to 
achieve better performances and to have better experiences in their organic courses. 
Using a functional group organization to achieve these outcomes can be an uphill battle 
because of the high priority that it inherently places on functional groups. This textbook, 
on the other hand, allows students to receive the same message from both their instructor 
and their textbook —  a clear and consistent message that mechanisms are vital to success 
in the course.

A Closer Look: Why is a Mechanistic  
Organization Better?
Consider what the novice sees when they begin a new functional group chapter. In an 
alcohols chapter, for example, students first learn how to recognize and name alcohols, 
then they study the physical properties of alcohols. Next, students might spend time on 
special spectroscopic characteristics of alcohols, after which they learn various routes that 
can be used to synthesize alcohols from other species. Finally, students move into the 
heart of the chapter: new reactions that alcohols undergo and the mechanisms that 
describe them. Within a particular functional group chapter, students find themselves 
bouncing among several themes.

Even within the discussion of new reactions and mechanisms that a particular func-
tional group can undergo, students are typically faced with widely varying reaction types 
and mechanisms. Take again the example of alcohols. Students learn that alcohols can act 
as an acid or as a base; alcohols can act as nucleophiles to attack a saturated carbon in a 
substitution reaction, or to attack the carbon atom of a polar π bond in a nucleophilic 
addition reaction; protonated alcohols can act as electrophiles in an elimination reaction; 
and alcohols can undergo oxidation, too.

With the substantial jumping around that takes place within a particular functional 
group chapter, it is easy to see how students can become overwhelmed. Under a func-
tional group organization, students don’t receive intrinsic and clear guidance as to what 
they should focus on, not only within a particular functional group chapter, but also from 
one chapter to the next. Without clear guidance, and without substantial time for focus, 
students often see no choice but to memorize. And they will memorize what they per-
ceive to be most important —  predicting products of reactions, typically ignoring, or giv-
ing short shrift to, fundamental concepts and mechanisms.

Under the mechanistic organization in this book, students experience a coherent story 
of chemical reactivity. The story begins with molecular structure and energetics, and then 
guides students into reaction mechanisms through a few transitional chapters. Thereafter, 
students study how and why reactions take place as they do, focusing on one type of 
mechanism at a time. Ultimately, students learn how to intuitively use reactions in syn-
thesis. In this manner, students have clear and consistent guidance as to what their focus 
should be on, both within a single chapter and throughout the entire book.
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The patterns we, as experts, see become clear to students when they learn under this 
mechanistic organization. Consider the following four mechanisms:
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The mechanism in Equation P-1 is for a Williamson synthesis of an ether; the one in 
Equation P-2 is for an alkylation of a terminal alkyne; the one in Equation P-3 is for an 
alkylation of a ketone; and the one in Equation P-4 is for the conversion of a carboxylic 
acid to a methyl ester. In these four reactions, the reactants are an alcohol, an alkyne, a 
ketone, and a carboxylic acid. In a functional group organization, these reactions will be 
taught in four separate chapters. Because all four reaction mechanisms are identical —  a 
deprotonation followed by an SN2 step —  all four reactions are taught in the same chapter 
in this book: Chapter 10.

Seeing these patterns early, students more naturally embrace mechanisms and use 
them when solving problems. Moreover, as students begin to see such patterns unfold in 
one chapter, they develop a better toolbox of mechanisms to draw on in subsequent chap-
ters. Ultimately, students gain confidence in using mechanisms to predict what will happen 
and why. I believe this is vital to their success throughout the course and later on admis-
sion exams such as the MCAT.

details about the Organization
Continuing with the success of the first edition, the book remains divided into three 
major parts:

Part I: Atomic and molecular structure

● Chapter 1: Atomic structure, Lewis structures and the covalent bond, and 
resonance theory, culminating in an introduction to functional groups

● Chapter 2: Aspects of three-dimensional geometry and its impacts on 
intermolecular forces

● Chapter 3: Structure in terms of hybridization and molecular orbital (MO) 
theory

● Chapters 4 and 5: Isomerism in its entirety, including constitutional isomerism, 
conformational isomerism, and stereoisomerism
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Much of the material in Chapters 1–5 will be new to students, such as organic functional 
groups, protic and aprotic solvents, effective electronegativity, conformers and cyclohex-
ane chair structures, and stereoisomers. Chapters 1–5 also contain a significant amount 
of material that students will recognize from general chemistry, such as electronic con-
figurations, Lewis structures and resonance, intermolecular forces, VSEPR theory and 
hybridization, and constitutional isomers. Because most students do not retain every-
thing they should from general chemistry, I have made the general chemistry topics in 
this textbook more extensive than in other textbooks. Knowing that this extended cover-
age is in the book, instructors should feel comfortable covering as much or as little of it 
as they see fit for their students.

Part II: Developing a toolbox for working with mechanisms

● Chapters 6 and 7: Ten common elementary steps of mechanisms
● Chapter 8: Beginnings of multistep mechanisms using SN1 and E1 reactions as 

examples

Mechanisms are vital to succeeding in organic chemistry, but before tackling mecha-
nisms, students must have the proper tools. Chapters 6–8 give students those tools, deal-
ing with aspects of elementary steps in Chapters 6 and 7 before dealing with aspects of 
multistep mechanisms in Chapter 8. Therefore, the chapters in Part II act a transition 
from Part I to Part III, which deals more intently with reactions.

Chapter 7 is a particularly important part of this transition. Students learn how to 
work with elementary steps in Chapter 7 in a low-risk environment, where there are no 
demands to predict products. Thus, there is no pressure to memorize overall reactions. 
Furthermore, the fact that Chapter 7 brings together the 10 most common elementary 
steps —  making up the mechanisms of the many hundreds of reactions students will 
encounter through Chapter 23 —  sends a strong message to students that mechanisms 
simplify organic chemistry. In turn, students take to heart from the outset that mecha-
nisms are worthwhile to learn.

Part III: Major reaction types

● Chapters 9 and 10: Nucleophilic substitution and elimination
● Chapters 11 and 12: Electrophilic addition
● Chapters 17 and 18: Nucleophilic addition
● Chapters 20 and 21: Nucleophilic addition–elimination
● Chapters 22 and 23: Aromatic substitution
● Chapter 24: Diels–Alder reactions and other pericyclic reactions
● Chapter 25: Radical reactions
● Chapter 26: Polymerization

Several of these chapters come in pairs, where the first chapter is used to introduce key 
ideas about the reaction or mechanism and the second chapter explores the reaction or 
mechanism to greater depth and breadth.

Pairing the chapters this way provides flexibility. An instructor could teach all of the 
chapters in order. Alternatively, following the guidelines set by the American Chemical 
Society, an instructor could teach the first of each paired chapter in the first semester as 
part of “foundational” coursework. Then, the remaining chapters would represent “in-
depth” coursework for the second semester. Teaching the chapters in this order would 
also allow an instructor to teach carbonyl chemistry in the first semester.

Interspersed in Part III are chapters dealing with multistep synthesis (Chapters 13 and 
19), conjugation and aromaticity (Chapter 14), and spectroscopy (Chapters 15 and 16). 
The spectroscopy chapters are self-contained and can be taught earlier, at the instructor’s 
discretion. They can even be taught separately in the laboratory. The spectroscopy chapters 
are movable like this because, with the mechanistic organization of the book, important 
aspects of spectroscopy are not integrated in reaction chapters like they typically are in a 
functional group text.
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The two chapters devoted to multistep synthesis (Chapters 13 and 19), on the other 
hand, are strategically located. Chapter 13 appears after students have spent several chap-
ters working with reactions. Having quite a few reactions under their belts, students can 
appreciate retrosynthetic analysis, as well as cataloging reactions as functional group 
transformations or reactions that alter the carbon skeleton. Moreover, Chapter 13 appears 
early enough so students can practice their skills devising multistep syntheses throughout 
the entire second half of the book; each subsequent chapter has multiple synthesis 
problems. Additionally, Chapter 13 is an excellent review of reactions students learned to 
that point in the book, so it could be taught at the end of the first semester as a capstone, 
or it could be taught at the beginning of the second semester to help jog students’ memo-
ries in preparation for second semester.

Chapter 19 is delayed a few more chapters because it deals with content related to 
reactions from Chapter 18, including protecting groups and choosing carbon–carbon 
bond-forming reactions that result in the desired relative positioning of functional 
groups. The multistep synthesis topics in Chapter 19 are somewhat more challenging 
than the ones in Chapter 13, so whereas Chapter 13 should be covered in most main-
stream courses, instructors can choose to cover only certain sections of Chapter 19.

I have found that treating multisynthesis in dedicated chapters makes it more mean-
ingful to students. When I taught synthesis under a functional group organization, it 
became a distraction to the reactions that students were simultaneously learning. I also 
found that students often associated a synthetic strategy only with the functional group 
for which it was introduced. For example, when the idea of protecting groups is intro-
duced in the ketones/aldehydes chapter of a textbook organized by functional group, 
students tended to associate protecting groups with ketones and aldehydes only. My 
dedicated synthesis chapters help students focus on synthesis without compromising 
their focus on reactions. Furthermore, synthesis strategies are discussed more holistically, 
so students can appreciate them in a much broader context rather than being applicable 
to just a single functional group.

Another major organizational feature of the book pertains to nomenclature. Nomen-
clature is separated out from the main chapters, in five relatively short interchapters —  
Interchapters A, B, C, E, and F. Separating nomenclature from the main chapters in this way 
removes distractions. It also allows students to focus on specific rules of nomenclature instead 
of specific compound classes. With each new nomenclature interchapter, the complexity of 
the material increases by applying the new rules to the ones introduced earlier.

The instructor has flexibility as to how to work with these nomenclature interchap-
ters. They can be covered in lecture or easily assigned for self-study. They can be split over 
two semesters or could all be covered in the first semester. The locations of the interchap-
ters in the book (i.e., immediately after Chapters 1, 3, 5, 7, and 9), however, should be 
taken as indicators as to the earliest that each interchapter should be assigned or taught. 
Covering a nomenclature interchapter substantially earlier than it appears in the book 
would expose students to compound classes well before those types of compounds are 
dealt with in the main chapters.

Finally, the application of MOs toward chemical reactions is separated from the main 
reaction chapters, and is presented, instead, as an optional, self-contained unit —  
Interchapter D. This interchapter appears just after Chapter 7, the overview of the 
10 most common elementary steps. Each elementary step from Chapter 7 is revisited 
from the perspective of frontier MO theory. Because this interchapter is optional, chap-
ters later in the book do not rely on coverage of this material.

Presenting this frontier MO theory material together in an optional unit, as I have 
done in Interchapter D in this book, offers two main advantages to students. First, it 
removes a potential distraction from the main reaction chapters and, being optional, 
instructors have the choice of not covering it at all. Another advantage comes from the fact 
that the MO pictures of all 10 common elementary steps appear together in the inter-
chapter. Therefore, instructors who wish to cover this interchapter can expect their stu-
dents to come away with a better understanding of the bigger picture of MO theory as it 
pertains to chemical reactions.
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Focused on the Student
While the organization provides a coherent story, I’ve included pedagogy that promotes 
active learning and makes this book a better tool for students.

Strategies for Success. I wrote these sections to help students build specialized skills 
they need in this course. For example, Chapter 1 provides strategies for drawing all reso-
nance structures of a given species, and sections in Chapters 2 and 3 are devoted to the 

importance of molecular modeling kits in working with  
the three-dimensional aspects of molecules and also with 
the different rotational characteristics of single and double 
bonds. In Chapter 4, students are shown step by step how to 
draw chair conformations of cyclohexane and how to draw 
all constitutional isomers of a given formula. Chapter 5 pro-
vides help with drawing mirror images of molecules. One 
Strategies for Success section in Chapter 6 helps students 
estimate pKa values and another helps students rank acid 

and base strengths based only on their Lewis structures. In Chapter 14, I include a sec-
tion that shows students how to use the Lewis structure to assess conjugation and aro-
maticity, and Chapter 16 has a section that teaches students the chemical distinction test 
for nuclear magnetic resonance.

Your Turn exercises. Getting students to read actively can be challenging, so I wrote 
the Your Turns in each chapter to motivate this type of behavior. Your Turns are basic 
exercises that ask students to either answer a question, look something up in a table, con-
struct a molecule using a model kit, or interact with art in a figure or data in a plot. These 
exercises are also intended to be “reality checks” for students as they read. If a student can-
not solve or answer a Your Turn exercise easily, then that student should interpret this as a 
signal to either reread the previous section(s) or seek help. Short answers to all Your Turns 
are provided in the back of the book and complete solutions to these exercises are provided 
in the Study Guide and Solutions Manual.

Consistent and effective problem-solving approach. Helping students become expert 
problem solvers, in this course and beyond, is one of my major goals. I have developed the 
Solved Problems in the book to train students how to approach a problem. Each Solved 
Problem is broken down into two parts: Think and Solve. In the Think part, students are 
provided a handful of guiding questions that I want them to be asking as they approach the 
problem. In the Solve part, those questions are answered and the problem is solved. This 
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mirrors the strategy I use to help students during office hours, 
and we have used these same steps for every problem in the Study 
Guide and Solutions Manual that accompanies the book.

Biochemistry and the MCAT. Most students taking 
organic chemistry are biology majors or are seeking a career in 
a health profession. They appreciate seeing how organic chem-
istry relates to their interests and look for ways in which this 
course will prepare them for the admissions exams (such as the 
MCAT) that may have a large impact on their future.

Rather than relegating biochemistry to the end of the book, I have placed self-
contained Organic Chemistry of Biomolecules sections at the ends of several chapters, 
beginning with Chapter 1. The topics chosen for these sections cover many of the topics 
dealt with on the MCAT, which means that the Organic 
Chemistry of Biomolecules sections are not in addition to 
what students are expected to know for the MCAT; they are 
topics that students should know for the test. In even the earli-
est of chapters, students have the tools to start learning aspects 
of this traditional biochemistry coverage. More importantly, 
these sections provide reinforcement of topics. In each bio-
molecules section, the material is linked directly back to con-
cepts encountered earlier in the chapter.

These Organic Chemistry of Biomolecules sections are both optional and flexible. 
Instructors can decide to cover only a few of these topics or none at all, and can do so 
either as they appear in the book or as special topics at the end of the second semester.

A range of interesting applications. In addition to the Organic Chemistry of Biomol-
ecules sections, most chapters have two special interest boxes. These boxes apply a concept 
in the chapter to some depth toward a discovery or process that can have significant appeal 
to students, perhaps delving into a biochemical process or examining new and novel mate-
rials. In addition to reinforcing concepts from the chapter, these boxes are intended to 
provide meaning to what students are learning, and to motivate students to dig deeper.

In addition to these special interest boxes, several Connections boxes in each chapter 
provide glimpses into the everyday utility of molecules that students have just seen.

New to the Second Edition
Organization of end-of-chapter problems. At the end of each chapter, problems are 
grouped by concept or section so students can easily identify the types of problems they 
need to work on. A set of Integrated Problems follows those sets of focused problems. 
These Integrated Problems require students to bring together major concepts from mul-
tiple sections within the chapter, or from multiple chapters, as they would on an exam. 
These problems also help students stay familiar with material from earlier in the book, 
thus reducing the time that students would need to spend separately for review. In addi-
tion to organizing problems this way, problems that relate to aspects of synthesis are 
labeled (SYN), so students and instructors can find those types of problem quickly.

More than 300 new problems. Based on user and reviewer feedback, several new 
problems have been added to each chapter to provide students even more opportunities 
to hone their problem-solving skills and to assess their mastery of the material. Some of 
these new problems are specifically geared toward material from the Organic Chemistry 
of Biomolecules sections from within the chapter, and are grouped together among the 
end-of-chapter problems to make them easily identifiable.

More Solved Problems. The first edition provided students with about seven Solved 
Problems per chapter on average. Several new Solved Problems have been added, bring-
ing the average to about eight per chapter. This gives students more opportunities to 
receive guidance on the strategies they should use when solving a problem. In addition, 
Solved Problems have been added to each nomenclature interchapter. Nomenclature 
builds in complexity as new rules are introduced, and each Solved Problem is designed to 
help students navigate those new rules.
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Nomenclature presented in five interchapters rather than four. In the first edition, 
nomenclature was presented in four interchapters. The fourth nomenclature interchapter 
dealt with all compound classes that call for the addition of a suffix, including amines, 
alcohols, ketones, aldehydes, and carboxylic acids and their derivatives. Users found this 
to be too much material for one chapter, so in the second edition, that interchapter has 
been split into two: Interchapters E and F. Interchapter E deals with alcohols, amines, 
ketones, and aldehydes; Interchapter F deals with carboxylic acids and their derivatives.

Addition of green chemistry. Based on user feedback, I have added a new section on 
green chemistry to Chapter 13, the first devoted chapter on multistep synthesis. 
Section 13.8b provides an overview of green chemistry and its importance, and then 
delves into three of the 12 main principles of green chemistry outlined by the American 
Chemical Society: less toxic reagents and solvents; safer synthesis routes; and minimizing 
by-products and other waste. In subsequent reaction chapters, students will find Green 
Chemistry boxes in the margin notes, which highlight green aspects of some reactions 
and provide green alternatives to others. For students planning on a career in chemistry, 
the goal is to instill in them the importance of considering green chemistry when design-
ing and carrying out a synthesis. All students should know what green chemistry is, and 
should come to appreciate the fact that chemists in the 21st century are increasingly 
prioritizing the well-being of our planet.

New strategies to help students analyze IR, NMR, and mass spectra. Even with a 
strong foundation in the principles that underlie IR and NMR spectroscopy and mass 
spectrometry, it can still be quite a challenge for students to analyze a spectrum in a way 
that brings the individual pieces of information together. To help students along these 
lines in the first edition, I presented spectra of unknowns and then brought students 
through the analysis methodically, although somewhat passively. New to the second edi-
tion, I now present separate strategies up front to analyze IR, NMR, and mass spectra, 
with sequential steps that students can follow. Then I show students how to apply these 
strategies toward the analysis of spectra of unknowns. Students are encouraged to develop 
other strategies that might work better for them, but until then, students have an effective 
strategy that they can use and rely on.

Oxidation states moved to Chapter 17. In the first edition, calculating oxidation 
states of atoms was presented in Chapter 1 alongside the calculation of formal charges. 
Although grouping those two topics together makes sense because of the similarities 
between the two methods, users reported that students weren’t sufficiently applying the 
ideas of oxidation states toward redox reactions until Chapter 17. Therefore, in the second 
edition, I moved the calculation of oxidation states to Section 17.3b, where hydride 
reductions are discussed.

Nobel Prize–winning coupling and metathesis reactions. Because of their impor-
tance to organic chemistry, transition metal coupling reactions and alkene metathesis 
reactions have been added to the second edition. These include: coupling reactions involv-
ing dialkylcurprates; the Suzuki reaction; the Heck reaction; and the Grubbs reaction. 
The utility of these reactions is primarily in organic synthesis, specifically in the forma-
tion of new carbon–carbon bonds, so these reactions have been added to Chapter 19, the 
second chapter devoted to organic synthesis.

Azo coupling and azo dyes. The presentation of azo coupling and a short discussion 
on azo dyes have been added to Chapter 23, the second chapter on aromatic substitution 
reactions. The benefits of this section are twofold. First, it is an application of diazotization 
(Chapter 22) and substituent effects in aromatic substitution (Chapter 23), so it provides 
reinforcement of newly learned concepts. Second, students can easily relate to dyes, so it is 
an excellent example of the daily impacts organic chemistry has on students’ lives.

Connections boxes. Students often ask, “How does organic chemistry apply to me?” 
or, “Why should I care about organic chemistry?” For the chemistry major or the student 
going on to medical school or another health profession, the long-term answer might be 
apparent. Connections boxes, which are new to the second edition, are designed to help 
answer that question as it relates to the immediate. In the margins of each chapter, stu-
dents will find several Connections boxes that highlight the importance or application of 
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a molecule that was just encountered. Students might see that the molecule is integral in 
the synthesis of a pharmaceutical drug, or that the molecule is important in the manufac-
ture of a material that students use daily. More than just helping provide an answer to the 
above questions, these Connections boxes also help keep students interested in the mate-
rial, and an interested student is a more successful student.
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Additional Resources
For students
Study Guide and Solutions Manual
by Joel Karty, Elon University, and Marie Melzer

Written by two dedicated teachers, this guide provides students with fully worked solu-
tions to all unworked problems in the text. Every solution follows the Think and Solve 
format used in the textbook, so the approach to problem solving is modeled consistently.

Smartwork5 (digital.wwnorton.com/karty2)
Smartwork5 is the most intuitive online tutorial and homework system available for 
organic chemistry. A powerful engine supports and grades a wide variety of problems 
written for the text, including numerous arrow-pushing problems. Every problem in 
Smartwork5 has hints and answer-specific feedback to coach students and provide the 
help they need, when they need it. Problems in Smartwork5 link directly to the appropri-
ate page in the ebook so students have an instant reference and are prompted to read.

Assigning, editing, and administering homework within Smartwork5 is easy. Instruc-
tors can select from Norton’s bank of more than 3200 high-quality, class-tested problems. 
Using the sort and search features, instructors can identify problems by chapter section, 
learning objective, question type, and more. Instructors can use premade assignments 
provided by Norton authors, modify those assignments, or create their own. Instructors 

http://www.digital.wwnorton.com/karty2
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also have access to intuitive question authoring tools —  the same ones Norton authors 
use. These tools make it easy to customize the question content to fit the course needs. 
Smartwork5 integrates seamlessly with most campus learning management systems and 
can be used on computers and tablets.

The Smartwork5 course features:

● An expert author team. The Smartwork5 course was authored by instructors who 
teach at a diverse group of schools: Arizona State University, Florida State University, 
Brigham Young University, Butler University, and Mesa Community College. The 
authors have translated their experience in teaching a diverse student population by 
creating a library of problems that will appeal to instructors at all schools.

● An upgraded drawing tool. Smartwork5 contains an upgraded 2-D drawing tool 
that mimics drawing on paper, reduces frustration, and helps students focus on the 
problem at hand. This intuitive drawing tool supports multistep mechanism and mul-
tistep synthesis problems and provides students with answer-specific feedback for 
every problem.

● Ease of use for students. The 2-D drawing tool has a variety of features that make 
drawing easy and efficient. Students are provided with templates including a variety 
of common rings and a carbon chain drawing tool. In addition, Smartwork5 presents 
students with commonly used elements, a simple click to add lone pairs option, and 
ease-of-use features such as undo, redo, simple-click erase, and zoom-in/zoom-out.

● Question variety. The Smartwork5 course offers a diverse set of problems including:
● Nomenclature problems
● Multistep Mechanism problems
● Multistep Synthesis problems
● Reaction problems
● Spectroscopy problems

● Conceptual question types include:
● Multiple-choice/multiple select
● Ranking
● Sorting
● Labeling
● Numeric entry
● Short answer

● Pooled problems. Smartwork5 features sets of pooled problems for multistep mech-
anisms and nomenclature to promote independent work. Groups of similar problems 
are “pooled” into one problem so different students receive different problems from 
the pool. Instructors can choose our preset pools or create their own.

Ebook (digital.wwnorton.com/karty2)
An affordable and convenient alternative to the print text, the Norton Ebook lets stu-
dents access the entire book and much more: They can search, highlight, and take notes 
with ease. The Norton Ebook allows instructors to share their notes with students. The 
ebook can be viewed on computers and tablets and will stay synced between devices. The 
online ebook is available at no extra cost with the purchase of a new print text or it may 
be purchased stand-alone with Smartwork5.

Molecular Model Kits
Norton partners with two model kits and can package either with the textbook for an 
additional cost.

Darling Molecular Model Kit. Atoms with their valences already attached are con-
structed by snapping together V-shaped pieces in a jigsaw style, emphasizing bond 
angles and symmetry elements of the atoms. Double bonds are independent, rectangu-
lar units to emphasize the planarity of sp2-hybridized atoms. Large substituents can be 
represented by various colored marker balls.

http://www.digital.wwnorton.com/karty2
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This kit includes 120 pieces:

● 57 sp3 pieces (black, red, blue, silver black, turquoise, gray)
● 16 sp2 pieces (gray)
● 18 marker balls (white, red, green, blue)
● 7 double bonds (gray)
● 6 half double bonds (gray, red)
● 2 trigonal atoms (gray)
● 2 linear bonds (gray)
● 2 linear triple bonds (gray)
● 4 bond extenders
● 4 octahedral pieces (pink)
● 2 Atom VisionsTM balls

HGS Molecular Structure Model Kit. The HGS kit reflects the traditional ball-
and-stick model for constructing molecules. Conjugation can be illustrated using trigo-
nal planar atoms that have five holes to accommodate three bonds and the two lobes of a 
p orbital. Double bonds can be constructed using curved sticks to occupy two valences of 
a tetrahedral atom.

This kit includes 210 pieces:

● 30 tetrahedral carbon atoms (black)
● 14 trigonal planar carbon atoms (black)
● 30 hydrogen atoms (light blue)
● 4 oxygen atoms (red)
● 6 nitrogen atoms (blue)
● 4 chlorine atoms (green)
● 2 metal atoms (grey)
● 12 orbital plates (green, blue)
● 108 bond pieces, 5 types (light blue, orange, green, yellow, white)

Please contact your Norton representative about ordering and pricing options for pack-
aging model kits.

For instructors
Instructor’s Guide
by Michelle Boucher, Utica College, and Cliff Coss, Northern Arizona University

Written by users of the first edition, the Instructor’s Guide is an invaluable resource for 
instructors organizing their course by mechanism for the first time. Based on their expe-
rience, Michelle and Cliff provide a brief overview of every chapter followed by a section-
by-section summary that illustrates how easy and rewarding it is to teach a mechanistically 
organized course. In addition to providing an easy transition, the authors offer other 
resources, such as class-tested clicker questions that instructors may choose to incorpo-
rate into their course. While this guide is an excellent resource for adopters, it may also 
answer questions for instructors who are interested in a mechanistic organization but are 
concerned about the transition. The Instructor’s Guide includes a chapter for each of the 
26 chapters in the textbook, plus a chapter for the molecular orbital theory interchapter 
and a chapter for each of the nomenclature interchapters.

Clickers in Action: Active Learning in Organic Chemistry
by Suzanne M. Ruder, Virginia Commonwealth University

This instructor-oriented resource provides information on implementing clickers in 
organic chemistry courses. Part I gives instructors information on how to choose and 
manage a classroom response system, develop effective questions, and integrate the ques-
tions into their courses. Part II contains 140 class-tested, lecture-ready questions. Most 
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questions include histograms that show actual student response, generated in large classes 
with 200–300 students over multiple semesters. Each question also includes insights and 
suggestions for implementation. The 140 questions from the book are sorted to corre-
spond to the chapters in the textbook.

Test Bank
by James Wollack, St. Catherine University, Jennifer Griffith, Western Washington Uni-
versity, and Chris Markworth, Western Washington University

After teaching with the first edition, our authors have written problems that will make 
assessing your students easy. Whether your exams are multiple choice, short answer and 
require drawing, or both, the variety and quality of the problems in the test bank will 
exceed your needs. The test bank contains approximately 1600 multiple-choice and 
short-answer questions classified by section and difficulty level. It is available with Exam-
View Test Generator software, allowing instructors to effortlessly create, administer, and 
manage assessments. The convenient and intuitive test-making wizard makes it easy to 
create customized exams with no software learning curve. Other key features include the 
ability to create paper exams with algorithmically generated variables and export files 
directly to Blackboard, Canvas, Desire2Learn, and Moodle.

Instructor’s Resources: Flash Drive
This helpful classroom presentation tool features:

● Select photographs and every piece of line art in JPEG format
● Select photographs and every piece of line art in PowerPoint
● Lecture PowerPoint slides with integrated figures from the book
● Instructor’s Guide in PDF format
● Test bank in PDF, Word, and ExamView formats
● Approximately 500 lecture-ready questions, in PowerPoint, from Clickers in Action as 

well as Joel Karty’s course

Downloadable Instructor’s Resources (wwnorton.com/instructors)
This instructor-only, password-protected site features instructional content for use in 
lecture and distance education, including test-item files, PowerPoint lecture slides, 
images, figures, and more. The instructor’s website includes:

● Select photographs and every piece of line art in JPEG format
● Select photographs and every piece of line art in PowerPoint
● Lecture PowerPoint slides with integrated figures from the book
● Instructor’s Guide in PDF format
● Test bank in PDF, Word, and ExamView formats
● Approximately 500 lecture-ready questions, in PowerPoint, from Clickers in Action as 

well as Joel Karty’s course

Author Blog: www.teachthemechanism.com
In July 2012, Joel Karty started a blog about his approach and his experience teaching a 
course organized by mechanism. Now there are more than 120 guest blog posts written 
by professors who use Joel’s book, garnering nearly 60,000 views and 201 active conver-
sations. What once was an informational blog has now grown into a platform for a com-
munity of instructors to share their experiences and insights, have open-forum discussions, 
view sample materials, and watch videos of Joel as he discusses a number of topics, 
including how he believes a mechanistic organization allows users of his book to have 
increased expectations about student understanding. You are encouraged to visit the blog 
and join the community.

http://www.teachthemechanism.com
http://www.wwnorton.com/instructors
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Preface for the student
Organic Chemistry and You
You are taking organic chemistry for a reason —  you might be pursuing a career in which 
an understanding of organic chemistry is crucial, or the course might be required for your 
particular field of study, or both. You might even be taking the course simply out of inter-
est. Regardless of the reason, organic chemistry impacts your life in significant ways.

Consider, for example, the growing concern about the increasing resistance of bacte-
ria to antibiotics over the past several decades. Perhaps no germ has caused more alarm 
than methicillin-resistant Staphylococcus aureus (MRSA), a type of bacteria responsible 
for staph infections. Methicillin is a member of the penicillin family of antibiotics, and 
resistance to methicillin in these bacteria was first observed in 1961. Today MRSA, 
which has been called a superbug, is resistant to most antibiotics, including all penicillin-
derived antibiotics.

A breakthrough in the fight against MRSA occurred in 2006 with the discovery of a 
compound called platensimycin, isolated from Streptomyces spores. The way that platensi-
mycin targets bacteria is different from that of any other antibiotic in use and, therefore, 
it is not currently susceptible to bacterial resistance.
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Platensimycin is found in a type of South African mushroom, Streptomyces platensis, 
and was discovered by screening 250,000 natural product extracts for antibacterial activ-
ity. Sheo B. Singh (Merck Research Laboratories) and coworkers determined the struc-
ture of platensimycin using a technique called nuclear magnetic resonance (NMR) 
spectroscopy, which we discuss in Chapter 16. Not long after, K. C. Nicolaou and 
coworkers from the Scripps Research Institute (La Jolla, California) and the University 
of California, San Diego, were the first to devise a synthesis of platensimycin from other 
readily available chemicals.

The story of platensimycin, from discovery to synthesis, involves several of the subdis-
ciplines that make up the field of organic chemistry.

● Biological chemistry (biochemistry): The study of the behavior of biomolecules and 
the nature of chemical reactions that occur in living systems.

● Structure determination: The use of established experimental techniques to deter-
mine the structure of newly discovered compounds.

● Organic synthesis: The design of pathways for making new compounds from exist-
ing, readily available compounds by means of known organic reactions.

Because each of these areas typically focuses on solving existing and practical 
problems, they are considered to be applied areas of organic chemistry. However, other 
areas of organic chemistry, considered to be theoretical in nature, provide the foundations 
on which such applications rest. They focus on answering questions about the how and 
why of chemical processes. For example, an understanding of the basic principles of 
NMR spectroscopy (an analytical technique discussed in Chapter 16) underlies our abil-
ity to determine molecular structure. Understanding the principles that govern organic 
reactions (such as those involved in the synthesis of platensimycin) may allow us to 
enhance yields, not only by altering reaction conditions, but also perhaps by devising 
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(a) (b) (c) (d)

FIGURE P.1 Some uses of plastics Plastics, which are designed and created in the 
laboratories of organic chemists, are found in a wide range of products, such as (a) food 
packaging, (b) an artificial heart, (c) body armor made from Kevlar, and (d) a Boeing 787, a 
commercial jet whose body consists largely of composite materials made from plastics and 
carbon fibers.

(a)

(b)

FIGURE P.2 Organic chemistry 
in the electronics industry (a) A 
smartphone whose display is made 
from organic light-emitting diodes.  
(b) A molecular switch in which an 
organic molecule joins together 
two carbon nanotubes —  sheets of 
carbon in the form of cylinders with a 
diameter on the order of 1029 meter.

entirely new synthesis schemes. And understanding platensimycin’s specific mode of 
attack on bacteria will likely guide us in modifying its chemical structure to make it 
even more effective.

The story of platensimycin showcases the importance of organic chemistry in the 
pharmaceutical industry, but organic chemistry is at the center of other high-profile 
areas as well, including the fabrication of new materials such as plastics (the topic of 
Chapter 26). The durability and chemical stability of plastics have made them excel-
lent choices for use in food packaging (Fig. P.1a) and the fabrication of the artificial 
heart (Fig. P.1b). Plastics are the source of synthetic fibers such as nylon and polyester, 
which are often used in the clothing industry, as well as Kevlar, which is used to make 
body armor (Fig. P.1c). Composite materials made from plastic and carbon fibers are 
so strong that some commercial jets are now constructed with a body made largely 
from plastics (Fig. P.1d).

Organic chemistry has also been at the forefront of generating new materials for 
electronic devices. Organic light-emitting diodes (OLEDs) are the main components 
of electronic displays for many high-end smartphones (Fig. P.2a), and single organic 
molecules can be used to make electronic switches tens of thousands of times smaller 
than those used in today’s integrated circuits (Fig. P.2b).

Perhaps even more important to our lives is the impact that organic chemistry can 
have on our ability to understand, and solve, environmental problems, such as over-
flowing landfills (Fig. P.3a), the destruction of the stratospheric ozone layer (Fig. 
P.3b), and global warming (Fig. P.3c). Organic chemistry, for example, is helping pro-
vide new ways to recycle waste materials. Additionally, organic chemistry has been 
used to engineer new coolants that are safer for the environment than the chlorofluo-
rocarbons (CFCs) used in the late 20th century in refrigerators and air conditioners. 
Finally, organic chemistry may lead us to economically feasible processes by which we 
can synthesize hydrogen gas, a fuel whose combustion product is only water. This 
could be a welcome alternative to coal and oil, whose combustion products not only 
cause air and water pollution, but also generate carbon dioxide, one of several green-
house gases responsible for global warming.

Because organic chemistry is important in so many ways, you will find two special 
interest boxes in the main part of each chapter, which show how the material in the 
chapter directly connects to issues that you might find more relevant or more interest-
ing. Take the time to read those boxes, and consider researching them even further. In 
addition to those special interest boxes, you will find several Connections boxes in the 
margins of each chapter, each of which provides a glimpse into how a molecule you 
just encountered relates to an aspect of everyday life.
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some suggestions for studying
Perhaps you have heard that organic chemistry is difficult. Perhaps you have heard 
that it requires an enormous amount of memorization. Are these statements true? It 
depends on how you approach the course. What is true is that this book contains a 
lot of information — much more than you can memorize. There is a better way.

Organic chemistry can be understood through models and theories that are built on 
fundamental concepts. Consider, for example, that when two compounds react under a 
given set of conditions, the outcome of that reaction is precisely the same each and 
every time. Is this because the reactant molecules have memorized what products they 
are supposed to make? No —  they are obeying certain chemical laws, and those laws 
can be learned.

You will spend considerable effort throughout this course developing those models 
and theories. Reaction mechanisms — detailed steps that show how reactions take 
place —  are among the most important ideas to develop. If you devote your time and 
energy to understanding them and learning how they are applied toward solving 
problems, you will find that much of organic chemistry can be conquered without rote 
memorization, and you will find the course to be quite rewarding and enjoyable. 
Moreover, the skills you develop in organic chemistry will apply to complex situations 
you will face beyond this course.

If you are planning on a career in a health profession, it is particularly important 
for you to focus on understanding and applying concepts as opposed to memorizing. 
On standardized exams like the MCAT, you will often need to choose between 
answers that look equally good to students who have memorized the material. To a 
student who is well versed in applying concepts and mechanisms toward solving 
problems, on the other hand, those choices are more easily discernible.

(a)

(b) September 2016

(c)

FIGURE P.3 Organic chemistry and 
the environment Organic chemistry 
continues to play a significant role in 
solving environmental problems, such 
as (a) overflowing landfills, (b) ozone 
depletion (the area in blue represents 
the ozone hole over Antarctica), and 
(c) global warming (the ice sheets 
in Montana’s Glacier National Park 
have been melting at a dramatically 
accelerating rate over the past  
90 years).
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In light of how important it is to understand concepts and mechanisms, your success 
in this course will demand a lot of time and devotion. Therefore, you should consider the 
following suggestions for using that time, and this book, most efficiently:

● Read actively and diligently. You should try to read the assigned sections before class 
if possible. Reading prior to class means that you will see the material for the second 
time in class. This will allow you to better process information and give you ample 
opportunity to ask pertinent questions. When you read, you should have a pen or 
pencil in hand so you can underline or highlight what you feel is important, and take 
notes about what you find enlightening or confusing. When the text refers to a figure 
or reaction mechanism, take that as a cue to study that figure now. Be sure that what 
the text is describing makes sense to you before you move on. If you are referred to a 
previous chapter, flip to the appropriate page to refresh your memory.

● Your Turns. The Your Turn exercises are relatively short activities that ask you to 
complete a task based on what you have just read. These exercises were developed to 
help you remain actively engaged while you read. They should also help you quickly 
evaluate whether you understand the topic at hand. I encourage you to work through 
all Your Turn exercises in each chapter and quickly check the answers in the back of the 
book. Feedback from students who have used this book supports this advice.

● Problems. As with anything new you attempt, mastery requires practice. Most of 
your practice should come from solving problems. I have included more than 2000 
problems throughout this book. Many are integrated into the chapters, but most are 
gathered at the end of each chapter. Take the time to work through as many problems 
as possible, and use them to assess areas of strength and weakness.

That said, it’s time to get started. Keep your focus on concepts and mechanisms, work 
hard, and ask questions!
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Organic chemistry is often called “the chemistry of life” because certain types of 
compounds, and the reactions they undergo, are suitable to sustain life, while 
others are not. What are the characteristics of such compounds and what 

advantages do those compounds afford living organisms? Here in Chapter 1 we begin 
to answer these questions.

We review several aspects of atomic and molecular structure typically covered in 
a general chemistry course, including ionic and covalent bonding, the basics of Lewis 
dot structures, and resonance theory. We then begin to tighten our focus on organic 
molecules, presenting various types of shorthand notation that organic chemists 
often use and introducing you to functional groups commonly encountered in organic 
chemistry.

Toward the end of this chapter, we shift our focus to examining specific classes of 
biomolecules: amino acids, monosaccharides, and nucleotides. Not only does such a 
discussion provide insight into the relevance of organic chemistry to biological systems, 
but it also reinforces specific topics covered in the chapter, such as functional groups.

1.1  What Is Organic Chemistry?
Organic chemistry is the branch of chemistry involving organic compounds. What, 
then, is an organic compound?

In the late 1700s, scientists defined an organic compound as one that could be 
obtained from a living organism, whereas inorganic compounds encompassed 

Atomic and Molecular 
Structure

1Organic chemistry is often referred 
to as the chemistry of life because 
biological compounds such as DNA, 
proteins, and carbohydrates are 
themselves organic molecules. In 
this chapter, we examine some of the 
bonding characteristics of these and 
other organic molecules, which are 
constructed primarily from carbon, 
hydrogen, nitrogen, and oxygen.
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everything else. It was believed that organic compounds could not be made in the 
laboratory; instead, only living systems could summon up a mysterious “vital force” 
needed to synthesize them. This belief was called vitalism. By this definition, many 
familiar compounds, such as glucose (a sugar), testosterone (a hormone), and deoxy-
ribonucleic acid (DNA), are organic (Fig. 1-1).

This definition of organic compounds broke down in 1828, when Friedrich Wöhler 
(1800–1882), a German physician and chemist, synthesized urea (an organic com-
pound known to be a major component of mammalian urine) by heating a solution of 
ammonium cyanate (an inorganic compound; Equation 1-1).

(NH4)
+(NCO)–

Ammonium cyanate

An inorganic
compound

An organic
compound

Urea

Heat
C

H2N

O

NH2

(1-1)

If vitalism couldn’t account for the distinction between organic and inorganic 
compounds, what could? Gradually, chemists arrived at our modern definition:

An organic compound contains a substantial amount of carbon and hydrogen.

This definition, however, is still imperfect, because it leaves considerable room for 
interpretation. For example, many chemists would classify carbon dioxide (CO2) as 
inorganic because it does not contain any hydrogen atoms, whereas others would 
argue that it is organic because it contains carbon and is critical in living systems. In 
plants, it is a starting material in photosynthesis, and in animals, it is a by-product 
of respiration. Similarly, tetrachloromethane (carbon tetrachloride, CCl4) contains 
no hydrogen, but many would classify it as an organic compound. Butyllithium 
(C4H9Li), on the other hand, is considered by many to be inorganic, despite the fact 
that 13 of its 14 atoms are carbon or hydrogen. Although this definition of an 
organic compound has its inadequacies, it does allow chemists to classify most 
molecules.

Chapter Objectives
On completing Chapter 1 you should be able to:

 1.  Distinguish organic compounds from inorganic ones.
 2.  Explain the advantages that come from carbon being the 

basis of organic molecules.
 3.  Describe the basic structure of an atom and understand 

that the vast majority of its volume is taken up by 
electrons.

 4.  Determine the ground state electron configuration of 
any atom in the first three rows of the periodic table and 
distinguish valence electrons from core electrons.

 5.  Define bond length and bond energy and understand how 
these two quantities depend on the number of bonds 
between a given pair of atoms.

 6.  Draw the Lewis structure of a species, given only its 
connectivity and total charge.

 7.  Differentiate between a nonpolar covalent bond, a polar 
covalent bond, and an ionic bond, and distinguish a 
covalent compound from an ionic compound.

 8.  Assign the formal charge to any atom in a molecular 
species, given only its Lewis structure.

 9.  Describe what a resonance structure is and explain the 
effect that resonance has on a species’ stability.

 10.  Draw all resonance structures of a given species, as 
well as its resonance hybrid, and determine the relative 
stabilities of resonance structures.

 11.  Draw and interpret Lewis structures, condensed formulas, 
and line structures.

 12.  Explain why functional groups are important and  
identify functional groups that are common in organic 
chemistry.
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The birth of organic chemistry as a distinct field occurred around the 
time that vitalism was dismissed, making the discipline less than 200 years 
old. However, humans have taken advantage of organic reactions and the 
properties of organic compounds for thousands of years! Since about 
6000 BC, for example, civilizations have fermented grapes to make wine. 
Some evidence suggests that Babylonians, as early as 2800 BC, could 
convert oils into soaps.

Many clothing dyes are organic compounds. Among the most 
notable of these dyes is royal purple, also called Tyrian purple, which 
was obtained by ancient Phoenicians from a type of aquatic snail called 
Bolinus brandaris (Fig. 1-2). These organisms produced the compound in 
such small amounts, however, that an estimated 10,000 of them had to 
be processed to obtain a single gram of dye. Therefore, the dye was 
available almost exclusively to those who had substantial wealth and 
resources — royalty.

Organic chemistry has matured tremendously since its inception. 
Today, we can not only use organic reactions to reproduce complex mol-
ecules found in nature, but also engineer new molecules never before seen.

1.2  Why Carbon?
Why does the carbon atom play such a central role in the chemistry of life and what is 
so special about it? First of all, the compounds possible when carbon is their chief struc-
tural component are incredibly diverse. As we see in Section 1.6, the carbon atom can 
form four covalent bonds to other atoms —  especially other carbon atoms.

A chain of carbon atoms
with single bonds only

With a chain of oxygen atoms, no double
bonds, triple bonds, or branching is possible.

A chain of carbon atoms with
a double and triple bond

A branched chain
of carbon atoms

C C C C CC

O O O O O OO

C

C

C

C C C

C C C C CC

FIGURE 1-1  Some familiar organic 
compounds  Glucose, testosterone, 
and DNA are organic compounds 
produced by living organisms.Glucose Testosterone DNA
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Royal purple

Bolinus brandaris
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C C C
C C

C

HC

C C CH
C

H
CH

N

C

FIGURE 1-2  Royal purple  Ancient 
Phoenicians processed about 10,000 
aquatic snails, Bolinus brandaris (top), 
to yield 1 g of royal purple dye. The 
structure of the molecule responsible 
for the dye’s color is shown (bottom).
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Consequently, carbon atoms can link together in chains of almost any length and rings 
of various sizes, allowing for an enormous range in molecular size and shape. Moreover, 
the ability to form four bonds means there is potential for branching at each carbon in 
the chain. And each carbon atom is capable of forming not only single bonds, but double 
and triple bonds as well. These characteristics make possible a tremendous number of 
compounds, even with a relatively small number of carbon atoms. Indeed, to date, tens 
of millions of organic compounds are known, and the list is growing rapidly as we con-
tinue to discover or synthesize new compounds.

Far less diversity would be possible in compounds based on another element, such as 
oxygen. Oxygen atoms tend to form two covalent bonds, which would allow for a linear 
chain only (as shown in the hypothetical example on p. 3). No branching could occur, 
nor could other groups or atoms be attached to the chain except at the ends. Further-
more, the atoms along the chain could not participate in either double or triple bonds.

If carbon works so well, then why not silicon, which appears just below carbon in 
the periodic table? Elements in the same group (column) of the periodic table tend to 
exhibit similar chemical properties, so silicon, too, can form four covalent bonds, giv-
ing it the same potential for diversity as carbon.

The answer is stability. As we see in Section 1.4, the carbon atom forms rather 
strong bonds with a variety of atoms, including other carbon atoms. For example, 
it takes 339 kJ/mol (81 kcal/mol) to break an average C i C single bond, and  
418 kJ/mol (100 kcal/mol) to break an average C i H bond. By contrast, it takes 
only 223 kJ/mol (53 kcal/mol) to break a typical Si i Si bond. The strength of 
typical bonds involving carbon atoms goes a long way toward keeping biomolecules 
intact —  an essential characteristic for molecules whose job is to store information 
or provide cellular structure.

Even though organic molecules are based on the carbon atom, what would life be 
like, hypothetically, if silicon atoms were to replace carbon atoms in biomolecules such 
as glucose (C6H12O6)? Glucose is broken down by our bodies through respiration to 
extract energy, according to the overall reaction in Equation 1-2. One of the by-
products is carbon dioxide, a gas, which is exhaled from the lungs. In a world in which 
life is based on silicon, glucose would be Si6H12O6, and its by-product would be silicon 
dioxide (SiO2), as shown in Equation 1-3. Silicon dioxide, a solid, is the main compo-
nent of sand; in its crystalline form, it is known as quartz (Fig. 1-3).

 C6H12O6(s) 1 6 O2(g) S 6 CO2(g) 1 6 H2O(/) (1-2)

 Si6H12O6(s) 1 6 O2(g) S 6 SiO2(s) 1 6 H2O(/) (1-3)

1.3  Atomic Structure and Ground 
State Electron Configurations

In Section 1.2, we saw that carbon’s bonding characteristics are what give rise to the 
large variety of organic molecules. Those bonding characteristics, and the bonding 
characteristics of all atoms, are governed by the electrons that the atom has.

This section, then, is devoted to the nature of electrons in atoms. We first review 
the basic structure of an atom, followed by a discussion of orbitals and shells. Finally, 
we review electron configurations, distinguishing between valence electrons — electrons 
that can be used for bonding — and core electrons.

1.3a  The Structure of the Atom
At the center of an atom (Fig. 1-4) is a positively charged nucleus, composed of pro-
tons and neutrons. Surrounding the nucleus is a cloud of negatively charged electrons, 
attracted to the nucleus by simple electrostatic forces (the forces by which opposite 

FIGURE 1-3  Quartz crystal  Quartz 
(silicon dioxide) is the silicon analog 
of carbon dioxide. Whereas carbon 
dioxide is gaseous, silicon dioxide is 
a solid.

FIGURE 1-4  Basic structure of 
the atom  Atoms are composed of 
a nucleus surrounded by a cloud 
of electrons. Protons (white) and 
neutrons (gray) make up the nucleus. 
(This figure is not to scale. If it were, 
the size of the electron cloud, which 
is much larger than the size of the 
nucleus, would have a radius on the 
order of 500 meters!)

Electron
cloud

Nucleus
(proton = white;
neutron = gray)
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charges attract one another and like charges repel one another). Individual electrons 
are incredibly small, even much smaller than the nucleus, but the space that electrons 
occupy (i.e., the electron cloud) is much larger than the nucleus. In other words:

● The size of an atom is essentially defined by the size of its electron cloud.

● The vast majority of an electron cloud (and thus the vast majority of an atom) is 
empty space.

Table 1-1 lists the mass and charge of each of these elementary particles. Notice 
that the masses of the proton and neutron are significantly greater than that of the 
electron, so the mass of an atom is essentially the mass of just the nucleus.

An atom, by definition, has no net charge. Consequently, the number of electrons 
in an atom must equal the number of protons. The number of protons in the nucleus, 
called the atomic number (Z), defines the element. For example, a nucleus that has six 
protons has an atomic number of 6, and can only be a carbon nucleus.

If the number of protons and the number of electrons are unequal, then the entire 
species (that particular combination of protons, neutrons, and electrons) bears a net 
charge, and is called an ion. A negatively charged ion, an anion (pronounced AN-eye-
on), results from an excess of electrons. A positively charged ion, a cation (pronounced 
CAT-eye-on), results from a deficiency of electrons.

Chemistry with Chicken Wire

Even though carbon takes center stage in organic chemistry, organic molecules invariably include 
other atoms as well, such as hydrogen, nitrogen, oxygen, and halogen atoms. Some of the most 
exciting chemistry today, however, involves extended frameworks of only carbon. A single flat 
sheet of such a framework is called graphene, and resembles molecular chicken wire. Wrapped 
around to form a cylinder, a graphene sheet forms what is called a carbon nanotube. Pure carbon 
can even take the form of a soccer ball —  the so-called buckminsterfullerene.

A sheet of graphene A carbon nanotube Buckminsterfullerene

These structures themselves have quite interesting electronic properties, giving them 
a bright future in nanoelectronics. Carbon nanotubes and buckminsterfullerenes have high 
tensile strength, moreover, giving them potential use for structural reinforcement in concrete, 
sports equipment, and body armor. Chemical modification gives these structures an even wider 
variety of potential uses. Graphene oxide, for example, has promising antimicrobial activity, and 
attaching certain molecular groups to the surface of a carbon nanotube or buckminsterfullerene 
has potential for use as drug carriers for cancer therapeutics.

Table 1-1  Charges and 
Masses of Subatomic 
Particles

Particle
Charge 

(e)a
Mass 
(u)b

Proton 11 ,1

Neutron 0 ,1

Electron 21 ,0.0005

ae 5 Elementary charge.
bu 5 Unified atomic mass unit.
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SolvEd PRoBlEm 1.1

How many protons and electrons does a cation of the carbon atom have if its net 
charge is 11?

Think  How many protons are there in the nucleus of a carbon atom? Does a 
cation have more protons than electrons, or vice versa? How many more, given the 
net charge of the species?

Solve  A carbon atom’s nucleus has six protons. A cation with a 11 charge 
should have one more proton than it has electrons, so this species must have five 
electrons.

PRoBlEm 1.2  (a) How many protons and electrons does an anion of the carbon 
atom have if its net charge is 21? (b) How many protons and electrons does a 
cation of the oxygen atom have if its net charge is 11? (c) How many protons and 
electrons does an anion of the oxygen atom have if its net charge is 21?

1.3b  Atomic Orbitals and Shells
Electrons in an isolated atom reside in atomic orbitals. As we shall see, the exact loca-
tion of an electron can never be pinpointed. An orbital, however, specifies the region of 
space where the probability of finding a given electron is high. More simplistically, we 
can view orbitals as “rooms” that house electrons. Atomic orbitals are examined in greater 
detail in Chapter 3; for now, it will suffice to review some of their more basic concepts.

● Atomic orbitals have different shapes. An s orbital, for example, is a sphere, whereas 
a p orbital has a dumbbell shape with two lobes (Fig. 1-5). Each orbital is centered 
on the nucleus of its atom or ion.

● Atomic orbitals are organized in shells (also known as energy levels). A shell is 
defined by the principal quantum number, n. There are an infinite number of shells 
in an atom, given that n can assume any integer value from 1 to infinity.
●  The first shell (n 5 1) contains only an s orbital, called 1s.
●  The second shell (n 5 2) contains one s orbital and three p orbitals, called 2s, 

2px, 2py, and 2pz.
●  The third shell (n 5 3) contains one s orbital, three p orbitals, and five d orbitals.

● Up to two electrons are allowed in any orbital.
●  Therefore, the first shell can contain up to two electrons (a duet).
●  The second shell can contain up to eight electrons (an octet).
●  The third shell can contain up to 18 electrons.

● With increasing shell number, the size and energy of the atomic orbital increase. For 
example, comparing s orbitals in the first three shells, the size and energy increase in 
the order 1s , 2s , 3s, as shown in Figure 1-6. Similarly, a 2p orbital is smaller in 
size and lower in energy than a 3p orbital.

● Within a given shell, an atomic orbital’s energy increases in the following order: 
s , p , d, etc. In the second shell, for example, the 2s orbital is lower in energy 
than the 2p.

1.3c  Ground State Electron Configurations:  
Valence Electrons and Core Electrons

The way in which electrons are arranged in atomic orbitals is called the atom’s elec-
tron configuration. The most stable (i.e., the lowest energy) electron configuration is 
called the ground state configuration. Knowing an atom’s ground state configuration 
provides insight into the atom’s chemical behavior, as we will see.

FIGURE 1-5  orbitals  Orbitals 
represent regions in space where an 
electron is likely to be. An s orbital 
is spherical, and a p orbital is a 
dumbbell.

p Orbitals Orbital

FIGURE 1-6  Relationship between 
principal quantum number, orbital 
size, and orbital energy  As the shell 
number of an orbital increases, its 
size and energy increase, too. The 
horizontal black lines indicate each 
orbital’s energy.
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With the relative energies of atomic orbitals established, 
an atom’s ground state electron configuration can be obtained 
by applying the following three rules:

 1. Pauli’s exclusion principle: No more than two electrons 
(i.e., zero, one, or two electrons) can occupy a single 
orbital; two electrons in the same orbital must have 
opposite spins.

 2. Aufbau principle: Each successive electron must fill the 
lowest energy orbital available.

 3. Hund’s rule: Before a second electron can be paired in 
the same orbital, all other orbitals at the same energy must 
contain a single electron.

According to these three rules, the first 18 electrons fill 
orbitals as indicated in Figure 1-7. Each arrow represents  
an electron, and the direction of the arrow — up or down —  
represents the electron’s spin.

In Figure 1-7, place a box around all of the orbitals in the second shell and 
label them.

Answers to Your Turns are in the back of the book.

YOur Turn 1.1 

In the ground state, the six electrons found in a carbon atom would fill the orbitals 
as shown in Figure 1-8, with two electrons in the 1s orbital, two electrons in the 2s 
orbital, and one electron in each of two different 2p orbitals (it doesn’t matter which 
two). The shorthand notation for this electron configuration is 1s22s22p2.

Knowing the ground state electron configuration of an atom, we can distinguish 
valence electrons from core electrons.

● Valence electrons are those occupying the highest energy (i.e., valence) shell. 
For the carbon atom, the valence shell is the n 5 2 shell.

● Core electrons occupy the remaining lower energy shells of the atom. For the 
carbon atom, the core electrons occupy the n 5 1 shell.

Valence electrons are important because, as we discuss in Section 1.5, they participate 
in covalent bonds. As we can see in Figure 1-8, for example, carbon has four valence 
electrons and two core electrons, so bonding involving carbon is governed by those 
four valence electrons.

In Figure 1-8, place a circle around the valence electrons and label them. 
Place a box around all of the core electrons and label them.

YOur Turn 1.2 

We can use the periodic table to quickly determine how many valence electrons an 
atom has (a copy of the periodic table appears inside the book’s front cover).

The number of valence electrons in an atom is the same as the atom’s group 
number.

FIGURE 1-7  Energy diagram of atomic orbitals for the first  
18 electrons  The order of electron filling is indicated in 
parentheses. Each horizontal black line represents a single orbital. 
Each successive electron fills the lowest energy orbital available. 
Notice in the 2p and 3p sets of orbitals that no electrons are paired 
up until the addition of the fourth electron.
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FIGURE 1-8  Energy diagram 
for the ground state electron 
configuration of the carbon atom  
This configuration is abbreviated 
1s22s22p2.
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Carbon is located in group 4A, consistent with its four valence electrons, whereas 
chlorine (group 7A) has seven. According to its ground state electron configuration 
(1s 22s 22p 63s 23p 5), chlorine’s valence electrons occupy the third shell.

Atoms are especially stable when they have completely filled valence shells. This is exem-
plified by the noble gases (group 8A), such as helium and neon, because they have 
completely filled valence shells and they do not form bonds to make compounds. 
Although the specific origin of this “extra” stability is beyond the scope of this book, 
the consequences are the basis for the octet and duet rules we routinely use when 
drawing Lewis structures (Section 1.5).

SolvEd PRoBlEm 1.3

Write the ground state electron configuration of the nitrogen atom. How many 
valence electrons does it have? How many core electrons does it have?

Think  How many total electrons are there in a nitrogen atom? What is the order in 
which the atomic orbitals should be filled (see Fig. 1-7)? What is the valence shell 
and where do the core electrons reside?

Solve  There are seven total electrons (Z 5 7 for N). The first two are placed  
in the 1s orbital and the next two in the 2s orbital, leaving one electron for each 
of the three 2p orbitals. The electron configuration is 1s22s22p3. The valence 
shell is the second shell, so there are five valence electrons and two core 
electrons.

PRoBlEm 1.4  Write the ground state electron configuration of the oxygen atom. 
How many valence electrons and how many core electrons are there?

1.4  The Covalent Bond:  
Bond Energy and Bond Length

In a compound, nuclei are held together by chemical bonds. Two types of funda-
mental bonds in chemistry are the covalent bond and the ionic bond (see Section 1.8). 
A covalent bond is characterized by the sharing of valence electrons between two or 
more atoms, as shown for two H atoms in a molecule of H2 (hydrogen gas) in 
Figure 1-9.

In Section 1.5, we will explore how various molecules can be constructed from 
atoms through the formation of covalent bonds, but first let’s examine the nature of 
covalent bonds more closely. Why do they form at all?

We can begin to answer this question by examining Figure 1-10a, which illustrates 
how the energy of two H atoms changes as a function of the distance between their 
nuclei. In particular, when two H atoms separated by a large distance are brought 
together, their total energy begins to decrease.

Lower energy corresponds to greater stability.

At one particular internuclear distance, the energy of the molecule is at a minimum, 
while at shorter distances the energy rises dramatically.

The internuclear distance at which energy is the lowest is called the bond length 
of the H i H bond. The energy that is required to remove the H atoms from that 
internuclear distance to infinity (toward the right in the figure) is the bond strength, 
or bond energy, of the H i H bond.

ConnECTIonS Molecular 
hydrogen (Fig. 1-9) is a very 
light gas and was used for 
buoyancy in the Hindenburg, a 
commercial passenger airship 
in the 1930s. Unfortunately, 
hydrogen gas is also very highly 
flammable, and the airship 
caught fire and was destroyed 
over New Jersey on May 6, 
1937, killing 36 people.

FIGURE 1-9  A covalent bond  A 
covalent bond is the sharing of two 
electrons between nuclei.

Each electron
belongs to
an isolated
H atom. A covalent bond

H H H H
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This idea is analogous to a ball rolling down a hill (Fig. 1-10b). A ball at the top of 
a hill has more potential energy than a ball at the bottom, so the ball at the top tends 
to roll downhill, coming to rest at the bottom. By the same token, it takes energy to 
roll the ball from the bottom of the hill back to the top.

Estimate the bond energy of the bond represented by Figure 1-10a.
YOur Turn 1.3 

It is often convenient to think of a covalent bond as a spring that connects two atoms. 
Just as it takes energy to lengthen or shorten a covalent bond from its bond length, it 
takes energy to stretch or compress a spring from its rest position, as shown in 
Figure 1-11.

SolvEd PRoBlEm 1.5

In the diagram shown here, which curve  
represents a stronger covalent bond?

Think  How can bond breaking be 
represented for each curve? Which  
of those processes requires more  
energy?

Solve  Bond breaking is represented by 
climbing from the bottom of the curve 
toward the right (i.e., the internuclear bond 
distance increases toward the right). For  
this process, more energy is required for  
the red curve, so the red curve represents  
a stronger bond.

PRoBlEm 1.6  Which of the two curves in Solved Problem 1.5 represents a longer 
bond?

Why are two hydrogen atoms connected by a covalent bond lower in energy 
than two isolated hydrogen atoms? Largely it is because of the additional electro-
static attraction experienced by electrons when they are shared between nuclei. In 

ConnECTIonS The behavior 
of covalent bonds as springs 
(Fig. 1-11) is what enables 
greenhouse gases like carbon 
dioxide (CO2) and methane 
(CH4) to absorb infrared 
radiation and warm the 
atmosphere.
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FIGURE 1-10  Formation of a chemical bond  (a) Plot of energy as a function of the 
internuclear distance for two H atoms. The H atoms are most stable at the distance at which 
energy is a minimum. (b) A ball at the top of a hill becomes more stable at the bottom of the 
hill, and therefore tends to roll downhill.
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Internuclear bond distance

Compressing the
spring raises the
energy.

Stretching
the spring
raises the
energy.

Minimum in energy at the
spring’s rest position

FIGURE 1-11  The spring model of 
a covalent bond  The energy curve 
of a spring connecting two masses 
resembles that of the covalent bond 
shown in Figure 1-10a. Both stretching 
and compressing the spring from its 
rest position increase the energy in 
the spring.




